
2009 Aviation Safety Program Technical Conference

Model-based Software Health Management
A. Dubey, G. Karsai, R. Kereskenyi, N. Mahadevan

Institute for Software-Integrated Systems
Vanderbilt University

NASA Cooperative Agreement NNX08AY49A
NASA POC: Paul Miner

Aviation Safety Program Technical Conference
November 17-19, 2009

Washington D.C.

1

2009 Aviation Safety Program Technical Conference

Outline

• Motivation

• Problem Statement

• Background

• IVHM milestones(s)
being addressed

• Approach

• Results

• Conclusions

• Future Plans

2

2009 Aviation Safety Program Technical Conference

Motivation: Software as Failure Source?

Qantas 72 - Oct 7, 2008 – A330 (Australia) – ATSB Report

At 1240:28, while the aircraft was cruising at 37,000 ft, the autopilot disconnected. From
about the same time there were various aircraft system failure indications. At
1242:27, while the crew was evaluating the situation, the aircraft abruptly pitched
nose-down. The aircraft reached a maximum pitch angle of about 8.4 degrees nose-
down, and descended 650 ft during the event. After returning the aircraft to 37,000 ft,
the crew commenced actions to deal with multiple failure messages. At 1245:08, the
aircraft commenced a second uncommanded pitch-down event. The aircraft reached
a maximum pitch angle of about 3.5 degrees nose-down, and descended about 400 ft
during this second event. At 1249, the crew made a PAN urgency broadcast to air
traffic control, and requested a clearance to divert to and track direct to Learmonth. At
1254, after receiving advice from the cabin of several serious injuries, the crew
declared a MAYDAY. The aircraft subsequently landed at Learmonth at 1350.

The investigation to date has identified two significant safety factors related to the pitch-
down movements. Firstly, immediately prior to the autopilot disconnect, one of the
air data inertial reference units (ADIRUs) started providing erroneous data
(spikes) on many parameters to other aircraft systems. The other two ADIRUs
continued to function correctly. Secondly, some of the spikes in angle of attack
data were not filtered by the flight control computers, and the computers
subsequently commanded the pitch-down movements.

3

http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/pdf/AO2008070_interim.pdf

http://www.atsb.gov.au/publications/investigation_reports/2008/AAIR/pdf/AO2008070_interim.pdf

2009 Aviation Safety Program Technical Conference

Motivation: Software as Failure Source?

AF 447 – June 1, 2009 – A330 (Atlantic Ocean) – BEA Interim Report

On Monday 1st June 2009 at around 7 h 45, the BEA was alerted by the Air France
Operations Coordination Centre, which had received no news from flight AF447
between Rio de Janeiro Galeão (Brazil) and Paris Charles de Gaulle. After having
established without doubt that the airplane had disappeared in international waters
and in accordance with Annex 13 to the Convention on International Civil Aviation
and to the French Civil Aviation Code (Book VII), the BEA launched a technical
investigation and a team was formed to conduct it.

• ACARS messages indicate:

– autopilot disconnect…

– reconfiguration to alternate control law…

– autothrust disconnect…

– inconsistent ADR data…

– cabin vertical speed

• History of speed sensor problems

“Visual examination showed that the airplane was not destroyed in flight; it appears to
have struck the surface of the sea in level flight with high vertical acceleration”

4

http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf

http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf
http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf
http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf
http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf
http://www.bea.aero/docspa/2009/f-cp090601e1.en/pdf/f-cp090601e1.en.pdf

2009 Aviation Safety Program Technical Conference

Problem Statement

Embedded software is a complex engineering artifact that can have
latent faults, uncaught by testing and verification. Such faults
become apparent during operation when unforeseen modes and/or
(system) faults appear.

The problem:

• General: How to construct a Software Health Management system
that detects such faults, isolates their source/s, prognosticates their
progression, and takes mitigation actions in the system context?

• Specific: How to specify, design, and implement such a system
using a model-based framework?

The larger picture:

• General: Software Health Management must be integrated with
System Health Management – „Software Health Effects‟ must be
understood on the Vehicle Level.

• Specific: Vehicle-Level Reasoning System: New start project that
builds a Vehicle-level HM technology – participation on the Boeing
team.

5

2009 Aviation Safety Program Technical Conference

Background

Software Fault Tolerance: Methods and techniques to implement software that
can tolerate faults in itself, in the platform it is running on, in the hardware
system it is connected to, and in the environment.

• Extends (hardware-based) fault-tolerance techniques to software

• Literature:

– Wilfredo Torres-Pomales: Software Fault Tolerance: A Tutorial, NASA/TM-2000-
210616, Langley Research Center, 2000

– Software Fault Tolerance, Edited by Michael R. Lyu, Published by John Wiley &
Sons Ltd.

• Single version techniques:

– Component self-protection and self-checking

– On-line checks: replication, timing, reversal, coding, reasonableness, structural…

– Checkpointing, pair-wise operation

• Multi-version techniques:

– Recovery blocks, n-version programming, n-self-checking, consensus-based…

• Limitations:

– Reactive behavior + Hand-crafted construction + Limited integration with „system‟

6

2009 Aviation Safety Program Technical Conference

Background

Why „Software Health Management‟ and why now?

• Complexity of systems necessitates an additional layer „above‟ SFT that
manages the „Software Health‟

• Embedded software ….

– is a crucial ingredient in aerospace systems

– is a method for implementing functionality

– is the „universal system integrator‟

– could exhibit faults that lead to system failures

– complexity has progressed to the point that zero-defect systems (containing both
hardware and software) are very difficult to build

• Systems Health Management is an emerging field that addresses precisely
this problem: How to manage systems‟ health in case of faults ?

• „Software Health Management‟ is not…

– A replacement for existing and robust engineering processes and standards
(DO-178B)

– A substitute for hardware- and software fault tolerance

– An „ultimate‟ solution for fault tolerance

7

2009 Aviation Safety Program Technical Conference

IVHM milestones(s) being worked

Model-based Software Health Management: Model-based techniques
and tools for detecting, diagnosing, prognosticating and mitigating
software-related faults.

• The work is directly related to the topic “IVHM 2.4 Software Health
Management” of the IVHM Technology Plan.

– “The goal of the Software Health Management element is to develop the tools
and techniques needed to enable the detection, diagnosis, prognosis, and
mitigation of errors and related adverse events caused or contributed to by
software systems in aircraft.”

• Related IVHM milestones:

• Award timeline: 10/1/08-9/31/11 (3 years), currently starting Year 2

8

2009 Aviation Safety Program Technical Conference

• Summary:

Build tools and techniques for model-based, generated health
manager/s for software components and systems.

Approach

9

Year Focus of effort:

Milestones: Deadline
(relative to year)

1 Literature review,
concept development,
component-level
health management

Literature review Y1+6mos
Implementation plan Y1+6mos

Component-level health manager Y1+10mos
Testbed, experiment, demonstration Y1+11mos

2 Software health
management for
cascading faults

Modeling language Y2+3mos

System-level health manager (v1) Y2+10mos
Testbed, experiment, demonstration Y2+11mos

3 Software health
management for
systemic faults

Modeling goal trees Y3+3mos

System-level health manager (v2) Y3+10mos
Experiment/demonstration Y3+11mos

2009 Aviation Safety Program Technical Conference

Phase I: Literature Review

Main conclusions:

- Faults in systems and in software are well recognized and both detection and
mitigation techniques are available.

- For SHM, the most relevant HM/FDIR concepts and techniques are: run-time fault
detection, diagnosis, and containment and mitigation.

- Fault detection for software is difficult, because it is often hard to define what the
correct behavior is. Hence, techniques are needed for modeling the correct
behavior of components and subsystems, under all foreseeable scenarios.

- Fault diagnosis in the classical sense („fault source isolation‟) may be problematic,
as it is hard to foresee the exact faults in software. It may be more pragmatic to
indict solely the faulty software component, with some model of how it has failed.

- Fault containment techniques could be used to provide the primary protection
from failures that can possibly propagate into high-criticality components, and such
techniques are needed for protecting the SHM system as well.

- Fault mitigation and recovery should be placed on a more systematic and formal
basis such that faults and failures are anticipated in the software development
process, and appropriate verifiable mitigation actions are designed into the
system. One can take advantage of the existing results; however a general,
reusable framework for the approach is still a research challenge.

2009 Aviation Safety Program Technical Conference

Phase I: Implementation Plan

• Phase I – Implementation Plan

– Use a component-based approach: software components and/or
component containers as the primary units as SHM

– 1. Select platform:

• Representative OS: – ARINC-653 / IMA emulated on Linux

• Component System: Lightweight Component Framework
Implementation

– 2. Prototype technology:

• Monitoring on the level of components

• Monitors detect discrepancies

• Health manager reacts with mitigation actions

– 3. Demonstrate technology on selected examples

• Small component-based system

• Small UAV flight software – two controllers

– Available from VU/CMU/UCB MURI project

2009 Aviation Safety Program Technical Conference

Prototype Technology

• Phase I – Implementation

– Technology approach: Component-level health management

• Monitoring the component

– Interfaces (synchronous/asynchronous calls)

– Component state

– Scheduling and timing (WCET)

– Resource usage

• Detection:

– Pre/post conditions over call parameters, rates, and component state

– Conditions over timing properties

– Conditions over resource usage (e.g. memory footprint)

– Combinations of the above

• Mitigation:

– Given detected anomaly and state of the component take action

– Can be time- or event-triggered

– Actions: restart, initialize, block call, inject value, inject call, release
resource, modify state; combination of the above

2009 Aviation Safety Program Technical Conference

Notional Component Model

A component is a unit (containing potentially many objects). The component is parameterized, has
state, it consumes resources, publishes and subscribes to events, provides interfaces and
requires interfaces from other components.

Publish/Subscribe: Event-driven, asynchronous communication (publisher does not wait)

Required/Provided: Synchronous communication using call/return semantics.

Triggering can be periodic or sporadic.

Extension of a Component Model defined by OMG (CCM) : state, resource, trigger interfaces.

The CM allows monitoring of various properties of the software component, at run-time.

Subscribe
(Event)

Publish
(Event)

Provided
(Interface)

Required
(Interface)

Resource
State

Parameter

Trigger

Component

Monitor arriving events

Monitor incoming calls

Monitor published
events

Monitor outgoing calls

Observe state

Monitor resource usage

Monitor control flow/
triggering

2009 Aviation Safety Program Technical Conference

Example: Component Interactions

Components can interact via asynchronous/event-triggered and synchronous/call-driven

connections.

Example: The Sampler component is triggered periodically and it publishes an event

upon each activation. The GPS component subscribes to this event and is triggered

sporadically to obtain GPS data from the receiver, and when ready it publishes its

own output event. The Display component is triggered sporadically via this event and

it uses a required interface to retrieve the position data from the GPS component.

Sampler
Component GPS

Component

Display
Component

P
S

S

2009 Aviation Safety Program Technical Conference

Component-level Health Management: 1/2

• Phase I – Component-level Health Manager

– Platform:

• ARINC-653-like RTOS emulated on Linux

– Linux process  „Partition‟ (controlled via signals)

– Linux thread  „Process‟ (monitored exec time)

• Lightweight Component Framework

– Open source CCM (MICO)

– Modified to work on SW emulator

– Monitoring:

• On interface  CCM “interceptors”

• On state  Required „state access‟ methods

• Timing  thread monitoring

• Resources  API calls

– Mitigation:

• Given detection event (condition, state, timing,

resource usage)

• Given time since last event

 Take mitigation action

 Independently designed, implemented, and verified.

Component

Component Framework

Monitor

M
a
n
a
g
e
r

Actions

Events

Events

P1(p,d) P2(p,d) P3(p,d)

P-sched

2009 Aviation Safety Program Technical Conference

Component-level Health Management: 2/2

Component

Component Framework

Mon

M
a

n
a

g
e

r

Actions

Events

Events

Manager‟s behavioral model:

- Finite-state machine

- Triggers: monitored events, time

- Actions: mitigation activities

Manager is local to component
container (for efficiency) but shall be
protected from the faults of
functional components

Notional behavior:

Track component state changes via
detected events and progression of
time

Take mitigation actions as needed

Design issues:

• Co-location with component (fault
containment)

• Local detection may implicate
another component

Idle

Exec

InvA

WCET

start

finish

timeout

/init

invA_violation

/reset

2009 Aviation Safety Program Technical Conference

Results

• Implementation platform for experimentation

– ARINC-653 emulator on Linux: Partial implementation of the APEX calls

– Lightweight Component Framework: MICO/CCM

• Minor changes in the source code

• Periodic and sporadic methods on components

• Extensions to the IDL-generated code to enforce execution time monitoring

2009 Aviation Safety Program Technical Conference

Results

Phase I – Component-level Health Manager - Status

• Platform:

– Prototype is operational on selected test examples

– Able to detect WCET violations, evaluate pre- and post-conditions on interface calls

– Examples use hand-coded conditions and mitigation actions

• Monitoring:

– Specification language is in progress – will be embedded in an architecture modeling
language

– Changes to IDL generator for CCM is prototyped

• Mitigation:

– Modeling (specification) language is in progress – will be integrated with the component
framework

– Code generator is in progress

2009 Aviation Safety Program Technical Conference

Results – Lessons learned about CM + RTOS

Features of CM and RTOS:

• (CM) Singleton components are needed - session-based components are not feasible (instantiated per
client request)

• (CM) CM relies on dynamic memory allocation that contradicts with the ARINC-653 static allocation
principles

• (CM) Chained component invocations must not result in self-deadlocks

• (CM) Has no support for monitoring the resource usage or the state of the component

• (CM) Exception handling and RTOS error handling must be harmonized, and exception cleanup must
release all resources and locks

• (ARINC 653) Health monitoring must be extended to monitor and manage health of each component in
(CM).

Issues:

• In ARINC-653 process WCET is fixed and processes cannot be created dynamically  Every
component method needs be implemented as a separate process [inefficient].

• (CM) event channels – as implemented by many – are not truly asynchronous, as they use the same
thread  CM implementations must be modified.

• Non-(CM) intra-partition communication must not be used  A disciplined software development
process is required.

• (CM) inter-partition communication should be mapped to sampling ports and queuing ports.  May lead
to inefficiencies (over TCP/IP sockets).

• Mitigation actions need to consider that components can have multiple processes (one per method).

19

2009 Aviation Safety Program Technical Conference

Progress

• Phase I – Testbed, experiment, demo - Status

– In the MURI Project “Frameworks and Tools for High-Confidence Design of
Adaptive, Distributed Embedded Control Systems” (VU, CMU, UCB, Stanford) we
have developed prototype flight control software for a small UAV

• Original vehicle design and controller by UCB/Stanford (C. Tomlin)

– Low + high-level controller, available as Simulink model

– Plan: use this model (2-component controller) as a vehicle to demonstrate a
functional Component-level Health Manager.

Simulink/Stateflow

CTRL

Component Framework

Mon

M
a

n
a

g
e

r

Actions

Events

Events

2009 Aviation Safety Program Technical Conference

Conclusions

• Component-level health management can be implemented in a model-
based component framework

• The component framework shall be tightly integrated with and based on a
robust RTOS platform (e.g. ARINC-653)

• Prototype shows that such integration is feasible but several differences
between traditional component frameworks and the RTOS must be resolved

• CCM-like abstractions (interfaces) allow the construction of the „anomaly
detection‟ services for health-management

• Generation of a component-level health manager from high-level models is
feasible and such generation can reduce the coding effort needed

– Models are used the generate code for and configure the component
infrastructure

21

2009 Aviation Safety Program Technical Conference

Next Steps

Immediate:

• Platform:

– Specification language for condition monitoring

– Extensions to the (CCM) IDL compiler and generator

– Finalize ARINC emulator

• Model-based health manager:

– Modeling language/tool for component architecture, monitors, and health
manager behavior

– Generator for component-level health manager

• Continuous integration, testing, and evaluation

Year 2:

• Develop modeling approach for cascading faults

• Design and develop system level health-manager

• Prototype and evaluate approach

22

2009 Aviation Safety Program Technical Conference

Publications

• Abhishek Dubey, Gabor Karsai, Robert Kereskenyi, Nag Mahadevan:
Technologies for Software Health Management, Technical Report for the
project.

• Abhishek Dubey, Nag Mahadevan, Robert Kereskenyi: Reflex and Healing
Architecture for Software Health Management; Extended Abstract for
Workshop on Software-Health Management, SMC-IT, July, 2009.

• Abhishek Dubey, Gabor Karsai, Robert Kereskenyi, Nag Mahadevan:
Towards a Real-time Component Framework for Software Health
Management, submitted to RTAS 2010.

• Collaboration with SHM community: 1st International Workshop on
Software-Health Management, at SMC-IT, Pasadena, CA, July, 2009
(http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm)

http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm

